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UNIT IIID
THE PROPERTIES OF GASES COMPOSED OF LOW~MASS PARTICLES

Free Electrons and Electromagnetic and Acoustical Radiatieon

Determination of properties for gases composed of particles lighter than a proten require
techniques that are different from those studlied im Unit IIIC. This unit develops the
methods required for the study of electromagnetic and acoustical waves, and free electrons.
Since electromagnectic radiation is always present in a physical space it is a necessary
part of any system. But its contribution to the properties of matter occupying the space
is shown to be negligible. Properties of solids are developed by considering acoustic

waves and free electrons.

Objectives.

At the conclusion of this unit the student should be able to:

1. Determine the energy, entropy,and particle density of a photon gas at a speci-
fied temperature.

2, Evaluate the phonon contribution to internal energy, specific heat,and entropy
of an atomic lattice of specified Debye temperature.

3. Determine the Fermi temperature of a metallic solid.

4. Evaluate the free electron contribution to the internal energy or specific heat
of a metallic solid.

5. Combine the phonon and free electron contributions to determine the total prop-
erties of an atomic lattice solid.

6. Describe the differences between the properties of an atomic and molecular lat-
tice peint crystal.

Supplementary References

1. Sonntag, R, E., and Van Wylen, G. J., Introduction to Thermodynamics: Classical
and Statistcical, Wiley (1971). Sect. 19.10 and Chapter 20, with Exers. 19.36 to
19.41, 20.1 to 20.7, 20,11, 20.13 to 20.18, Similar to this unit. A good supplement.

2. Holman, J. P., Thermodynamics; Second Ed., McGraw-Hill (1974). Sects. 8-7, 8-8
and 8-10 with Exmps. 8-3 to 8-7 and Exers. 8-2, 8-4, 8-7, 8-14, 8-18 to 8-23, Very
brief treatment, though comprehensive and similar to this unit.

3. Wark, K., Thermodynamics, Second Ed., McGraw-Hill (1971). Sects. 10-17 to 10-19
with Exers. 10-38 to 10-45. Very brief.

4., Tncropera, F. P., Molecular Structure and Thermodynamics, Wiley (1974).

Sect. 13.3. Uses a different approach to radiation properties in Sect. 2.1, followed
by an approach similar ta that of this unit in Sect. 13.3. Chapter 12 and Sects.
13.1 and 13.2 complete the topics considered in this unit with examples and exercises
A good supplement.

5. Tien, C. L., and Lienhard, J. H., Statistical Thermedynamics, Holt, Rinehart, and
Wwinston (1971). Chapter 6 develops the statistics of degenerate particles using a
different approach from the unit. Photons and free electrons are discussed. The
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UNIT IIID
THE PROPERTIES OF GASES COMPOSED GF LOW-MASS PARTICLES

Free Electrons and Electromagnetic and Acoustical Radiation

Unit IIIC investigated the properties of indistinguishable independent particles in the

Boltzmann limit, n, << g.. It was found that satisfaction of the limit is facilitated by

small particle density, n, (= N/V), high temperature, and large particle mass.?

. , (32
: 2
i - (____h* ) e 1 (I1IC~15)
Bs Vi2mm &t
max

In the consideration of molecular gases we found that only the lightest molecules, helium
and hydrogen, ever fail to satisfy the limit, see Exer. 7, Unit IIIC. Thus, in discussing
systems that do not normally satisfy the limit we need consider only particles whose mass

is less than that of a proton.

Exercise 1. Each atom of crystalline copper contributes a single electron to its free

electron gas. Determine the magnitude of nv(h2/2wm*kT)3/2 for the free electron gas in
solid copper at normal temperatures., Also, determine the hypothetical temperature at
which the limit would be satisfied by setting it equal to 1072,

Exer. 1 shows that the free electron gas within a metallic lattice would never sat-
isfy the Boltzmann limit., Systems of this type are said to be degenerafe. Since a single
electron constitutes an odd number of subatomic components, electricity is conducted by
degenerate Fermions.? The only common particles lighter than an electron are massless.
And the wave-particle duality principle allows us to envision electromagnetic radiation
either as waves or as a gas of massless particles translating at the speed of light,
photons. Similarly, we may envision acoustical radiation either as waves or as a gas of
massless particles translating at the speed of sound, phonons. Since zero is an even num-
ber of subatomic components, photons and phonons are Bosons. While we cannot apply the
limit test directly to these massless particles, we would not expect them to satisfy the
Boltzmann limit. Photons and phonons are degenerate Bosong. Thus we must employ the

exact distribution function to analyze free electrons and waves.

IThis expression, which involves volume per particle rather than pressure, is equiv-
alent to eqn. IIIC~15, see Appendix IIIC-A, Exmp. AlL.

2Pairs of electrons would be Bosoms. The phenomenon of superconductivity occurs
when electron wave functions are coupled creating stable electron pairs. These free elec-
tron pairs undergo a Bose degeneracy to establish the characteristics of the supercon-
ductor.
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FD & BE g
= n

3 ate, /kT 5 ok, /kT
e 1 41 e 1 -1

(I11B-14,16)

We begin with applications to waves.

I, PROPERTIES OF WAVES

Before we can apply eqn. IIIB-16 to determine the properties of systems of massless
Bosons (waves), we must evaluate the parameter a, Recall that two unknown multipliers,
o and B, were introduced as a step in Lagrange's method of finding a maximum subject to
imposed conditions. The problem was to maximize the entropy, or Enwi, for an isolated
system.

d(% - aN - BU) = d[f.nw(nj J - § sn, ;- 8 Zejsnj,i]’“ 0

The parameter B prescribes comservation of energy. After the three equilibrium distribu-
tion functions were derived in terms of the unknown multipliers, @ and £, the concept of
thermal equilibration was employed to evaluate 8 in gemeral, g = 1/kT (see Exmps. 2 and
B4 and Exer. B4 of Unit IIIB). The parameter o, on the other hand, is intended to pre-
scribe conservation of mass. In fact, however, it prescribes comservation of particles.
In the case of particles of nonzero mass, the two conservation principles are the same.
But for systems of massless particles, mass is conserved independentlaf the number of
particles present. Indeed photons and phonons can be created or destroyed subject only

to conservation of emergy. Thus, the multiplier ¢ is unnecessary for systems of massless

particles. (That is, o =0.)3 Thus, the distribution funetion for massless particles

becomes
° °1 (111D-1
= —1 D
n, = a
3 e, /kT )
e ] -1
Jote *to the Studsnt. The following erercise is not an objective of the unit. It pro-

9

vides tine interested student an opportunity to verify eqn. IIID-1 through a more formal
derivation.

Exercise 2. Modify the derivation of eqn, IIIB-16 as completed in Exer. B2, Appendix B
of Unit IIIB to exclude the comservation of particles requirement. Verify that eqm.
ITID-1 is the result. (No answer to this exercise is presented.)

In the following sections we employ eqn. IIID-1 to develop the properties of electromag-

netic and acoustical radiatiom.

3This verifies that massless particles do not satisfy the Boltzmann limit. As
nj/gj!max << 1 requires that e* >> 1, @ = 0 corresponds to a system which is always de-
genetrate, viz., never satisfies the Boltzmann limit.



i,

i ————

R

PROFERTIES OF WAVES 3

AL The Properties of the Photon Gas

Quantum mechanics was developed by Max Planck as a necassary step to accurately pre-
dict the properties of electromagnetic radiatiom. Planck hypothesized that radiation of
frequency v must possess energy in multiples of a minimum quantun, hv. Thus, the distri-
bution of a gas of photons in equilibrium at temperature T, using eqn. ITID-1, is

g,

j = hv,/kT
3 ] -1

In order to apply this distribution to determine the properties of a photon gas, we re-
quire the sequence of allowed frequencies, vj, and their corresponding degeneracies, gj.
The allowed frequencies are governed by the geometry of the enclosure, specifically by its
boundary conditions. The amplitude of waves within an enclosure must vanish at its bound-
aries. For example, the waves in a one-dimensional enclosure, as shown, are limited to

2Lx
ll =*—E— L=1,2, 3, ...

The relationship between frequency and wavelength is v = c/i.
In a three-dimensicnal cubic enclosure the combined three-dimensional wavelength limits

give the following allowed frequencies

11 1YE e (2. 2 2y

Uz’m’n=c—‘2+_2+—""2) =—l/3[.9. + m +‘n) n, m, L =1, 2, 3,. . .
A A A 2v
x v z

Note that this expression for the discrete frequencies has the form of eqn. I1IIC-1Z. It
is expressed as the product of a physical parameter and a dimensionless function of the
sequence of integers (m, m, &). Thus, the characteristic temperature that prescribes the
frequency spacing of a photon gas is

EA_U = _13.9_. (IIID-Z)

e =
2kvl/3

pht k

Ans. 1. The volume of a free electron is the same as that of an atom. Using the data of
Tables IA-1, 2 and ID-2
3

b7 N 3, ] 102 n -
a . Cu'e,Cu'A_8.84 gfem”-1 elect/atom-6.023-10""atoms/(gmol) _ o .- .loﬁzelect/cmB
v,el MCu 63.43 g/ (g mol)
and 3/2
n ——Ei—— = 8,47 - lOZzelect/cm3
v,ell2m™kT *
=27 2 {2

[ - _2é6.625 0 erg-siiéect) :r= 6,75+ lOBelect/state

27+ 9.109 - 107 “"g/elect + 1.38 + 10 ~ erg/(elect K) - 300 K
Obviously the limit is not satisfied at ordinary temperatures. It would theoretically be
satisfied {nj/gj!max'le“zj if the temperature were increased to 2.3l - 10°K.
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Exercise 3. Determine the magnitude of epht for enclesures of velume lnmp and 1 m3.

The answer to Exer. 3 shows that, while 6 is sensitive t¢ the volume of the en~

pht
closure, a combination of a very small enclosure at a very low temperature is required
for the effect of the discrete spectrum to be noticeable. We will consider only the high

temperature limit, T »>»> 8 In that case the spectrum of egn. IIID-la can be approx-

pht”
imated as continuous.
O 1
n, =n(v) = ‘E%%i%r__' (I1ID~1b)
e -1

Thus the distribution of tramslating pheotons is similar to that of translating molecules.
Both distributions can be approximated as continuous and both sets of allowed energies are
prescribed by three distinct sets of positive integers (¥, m, n) representing three direc-

I

tions of translation. Therefore, the degeneracy of translating photons can be adapted

from that developed for translating independent molecules in Appendix ITIC-A

. ®3/2 172
g (e) = 4V m < (ITIC-AL)
tr 3
h
The adaptation consists of eliminating the molecular mass by substituting the energy-mass

* 2
equivalence, € = m ¢, and multiplying the result by two to account for the fact that the

wave can be polarized in two perpendicular directions. Thus

SWVEZ

(he)?

To express this result in terms of frequency we must employ integral equivalence, g(e)de

8one (80 =

= g(v)dv where £ = hv, Thus

= 3 (ITID-3a)
c

(v) = BWVUZ
gpht

With this result we have the distribution function of a pheton gas in equilibrium in terms

of frequency 2
8wV y
n (v = — ———————
CJ (ehv/kT -1

(I1ID-4a)

The principal application of the characteristics of thermal radiation is to the determi-
nation of radiant heat transfer, see Unit IIIE. It is much more common in this field to
specify the distribution by wavelength rather than frequency. To accommodate this prefer-
ence we transform eqns. IIID-3 and 4 to a wavelength basis, v = e/A, du = (—C/lz)dk.

Then using the conditicn g(v)dv = -g(iA}di, we have

“The principal difference is that photons translate at the speed of light with their
energies dependent on frequency, whereas molecules translate at various speeds with their
energies being dependent on speed squared.
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8nv 8mv
3) = —— =

1

A& [e(hc/AkT)

(IIID-3b,4b)
-1]

The photon distribution allows us to establish the properties of a photon gas. TFor ex-

ample, the energy distribution per unit volume, often called Planck's Law is given by>’®

A,T
(T) E ( ) _ 8mch 1
A h -3
3 {e( c/AkT) _1] (111D-3)
The form of this distribution is rep-
resented in Fig. TIIID-1. Notice the pro-~
nounced maximum that separates the degen- : AT = 2898 umK
te 1 \
erate low energy {(long wavelength) photons E J,Hmh Temperature
from the classical high energy {(short wave- A
1
length) photons.7 The position of the max- U, (T X
YA
imum is an important parameter for the clas- Low
Tempargture
sification of thermal radiation.® N !
‘ T Uy
Example ., Differentiate u,,(T) with re- A
spect to wavelength and develop a condition
for the position of its maximum. . )
Fig. IITIDb-1. The Energy Distribution

The maximum is defined by

of Thermal Radiation

D=duv)\(T) =i{ 8he }= orbe .{
di dA [e {hc/AkT) 1] 1 e

R6[e

Thus the condition for the maximum has the form

X

(5 - x ) a max
max

-5 he o(he/ KT) :}
1]

(he/AKD)_ | *‘\ «T[o NE/KT)

81he (he/AkT he  {he/AkT)
(he/ART)_ 2 {‘5[6 -l 5T e }

=5

*Photon properties cannot be normalized on a per unit mass basis. Photon mass is
zero., Molar normalization is possible but inconvenient as the number of photons is a

variable.

8The wavelength distributicn of radiant emission is also called Planck's Law. It
differs only from eqn. IIID-5 by a constant, see Unit ITIE.

7A5 discussed above a system of photons never satisfies the Boltzmann limit, But
within a system the high energy (short wavelength) tail of the distribucion becomes clas-

R he/xkT)
sical,

sical methods of wave mechanics.

»>> 1, This portion of the distribution can be predicted by using clas-

J0ur development concerns tadiation originating due to temperature alone, We ex-
clude radiation that is mechanically generated, e.g., radio, TV, or other communication

signals, lasers, etc.
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where x . = hc/xmaka. Solving by trial and error we obtain, x,., = 4.9651. Thus the
condition for the wavelength maximum is

he _ 6.625 - 107347 s/part - 2.998 « 10%u/s
X pas 4.9651 + 1.380 « 10" 233/ (part X)

= 2.898+ 10 °m K =2898 um K

The position of the maximum in Planck's Law is developed in Exmp. 1. The resulting ex-
pression is called Wein’'s Law.?

AmaxT = 2898 um X {I11ID-6)
The maximum shifts to lower wavelength as the temperature level of the radiation is in-
creased,

Exercise 4. Determine the wavelength of maximum emission for objects at 300, 3000, and
30,000 K.

Solar radiation is emitted from the sun's surface at about 5600 K. Thus, the maxi-
mum of available "natural"™ light on earth is at 0,52 um. It is surely no coincidence that
this is the middle of the visible spectrum. The eye is capable of detecting radiation in
the wavelength range from about 0.4 to 0.7 um,

Exercise 5. Alien visitors from a distant solar system have very limited sight on earth.
Their eyes are sensitive in the wavelength range 0.2 to 0.3um. Estimate the emission tem-

" "
.

perature of their “sun

Planck's Law gives the wavelength distribution of thermal radiation. The total en-

ergy density is obtained by integrating over all wavelengths.

u (1) = [u , (T) d} - (I1ID-7a)
0

This process is represented graphically as the area under the distribution, see Fig,
ITID=-1.

Example 2. Substitute Planck's Law into eqn. IIID-7a and express the integral in terms of
the dimensionless variable, x = (hc/}kT),.

Direct substitution giwves

w 2 dx
u {T) = [ u_ (T)dr = 8nhe
v 0 12 5 KS{e(hc/lkT)__l]
Then using
x=—-1E~ d:{=—"-—b—(;_d}\ A=0, x =03 A =e, x =0
AKT Asz

9The normal unit of wavelength is the micrometer, pm. In this context it is often
abbreviated to micron, u.

Ans. 3. -34 3
6 3= 6.625 + 10 fzglwave- 2.998 :303m{?3==7.196 K, 5
21,380 10 ""J/wave K+ [10 "m7]

=7.196 - 107K

pht{V=Llmm pht|1m3
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We have 3
he \ he 0
@ |—==dA T o -
_ kT 4 (lsz J (lkT) _ SN(kT)a —x3dx 81'rk4 x3dx 4
u (1) = 8mhe{p s (he/AKT) = 3 < = 3 x T
<0 (e -1] (he)” = (e°-1)  (he) L0 (e7-1)

Exmp. 2 evaluated egn. IIID-7a in terms of a definite integral. The general {indefinirte
limit) form of this function is called the Debye integral; its values are listed in Table
I1ID-2 at the end of the Unit, Its value for the infinite limit is ﬂA/IS (see Ref. 5,

Appendix E). This gives the total energy density as
5. 4

= iﬁi—.j r# (ITID-7b)
15(he)

The number of photons per unit volume, or the photon density is developed in a similar

uv,pht LY

manner, see Exer. b. The result is

Nowe 17 ) .3
nv,yht(w) = —R-—V =3 &E npht’A(T)d;\ = 87+ 2.40&(%—':) T (IIID-8)

Exercise 6. Substitute the photon distribution into eqn. IIID-4L and express the required
incegration in terms of the dimensionliess variable, x (= he/AKT).

Exercise 7. Expressions for photon properties are normalized with volume rather than mass
or mole since photons are massless. For purposes of comparison, one can normalize photon
energy with Avogadro's number of photons and obtain photon energy in molar units, Ong
should not, however, compare such "molar" photon properties with the molar properties of
the matter that occupies the same space, 3S&& Exer. 9. The physical bases of these two
molar quantities are nct the same. Formulate an expression for the internal energy '"per

of ph " . Di entiate this ex i o derive an expression for .
mole photons,” ugny iffer ate this expression to der P cv’ he

The energy and particle density of a photon gas were determined by direct application
of their defining integrals. The following problems use the same procedures te determine
the entropy density and pressure of a photon gas.

Jote to the Student. The following examples develop expressions for the entropy and pres-
sure of the proton gas. The pesults are reported as eqns. IIID-9 and 18, The technigues
to develop these results are not representative of objectives of the unit.

Example 3. The entropy of a system of independent Boscons is described by egqa. IIIB-17.

J -g=-c /KT
SBE=-[-J— + Nka - k Z g_ln(l—-e. )
T 3=1 j

Adapt this relationship to the specific case of a photon gas. Incorporate the continuum
approximation by replacing the sum by an integral. Express the result as an integral
over the dimensionless variable, x (= he/AKT).

5. 4 3 4
For the photon $as we can substitute: a = 0, €, = hv,, and U = [8n°k /15(hc) IVI . The
continuum approximation allows us to replace th% sum over the energy levels by an integral
over wavelength. Substituting into eqn., IIIB-17, we obtain

5 4 =
sPE = [———-——8" k 3] VT - & snvf 42 san[l-e (hC/)‘kT)]
15 (hc) o A
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Then substituting the dimensionless function
he -hc

X = 3 dx = —— dx A =0, x=>=and )} =>x, x = {
~kT Asz
we obtain
5. 4 30 3
S e L Il KR E
P 15 (he) . A“KT
5 3 3%
_ 8 EE) - KE) 2,01 -
15 k(hc 8"Tk(hc j- x an(l-e Tdx
0

This integral can be transformed to the Debye integral form using "by parts” integration.
To that purpose, define
-X 3

W= n(l-e 9 aw = —2 gy = 9% 4V = x2dx vy = X
= 3
l1~e e =1
Thus
™ 3 w0 o 3 @ b
R U o _ X 1 x .1 SS.E___J:(TT_)
f % Ln(l-e T)dx 3 in(l-e ™ 3[ ex'l dx 3f £ 3015
0 Q 0 0
Substituting, we obtain
_ o8kt a1 et 3
Syphe © 3T UF = ———=T
P 15 (he) 45 (he)

Comparing this result te eqn. IIID-7b, we see s = /3T.

v, pht Z“‘l\.f,phl:

Example 4, An expression for the entropy of a photon gas was derived in the preceding
example. Use this result in conjunction with the Cibbs equation, dS = dU/T+ (p/T)dVv, ta
derive an expression for radiation pressure.

The Gibbs equation is of the form S = S(U,V). The definition of the derivative of a func-
tion of this form allows us to express pressure in terms of a partial derivative of the
entropy

/sy . (a S) au | p 2 s)
dS = — dU + || dV = — + dv Hence p = T(ﬁ—
% 2 J
3U)v Vi T T iy
The total entropy is & = Vs = V+4u /(3T). To Ffacilitate the differentiation, we
: X o pht v,pht v
abbreviace
8 n5k4 4 4
R S
(he) .
Ans, 4. Wein's Law pives A
prm— max.
T = 300 K; by - 2898 um K _ 9.663 um

max 300 K
Similarly at: T = 3000 K, A = 0.9663pm, T = 30,000 K, A = 0.09663 ym
max . max

Ans. 5. Presumably, the alien creatures' eyes have adapted to the maximum emission of
their "sun." Thus,

= 2898 um K _
scar 0.25 um 11,600 X
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Thus,
) R T S | R A B 1 2(&2}
~av) = 3 (3 VaT)U“:saT +3 Vadl {5y
U U
The last term can be evaluated using
A
4 9) (av) 4U (ar) aT T
U = VaT V = ——— _— = oa —— _— T e m— = e
aT4 aT U aTS v U 4U 4v
Then
3 u
35 R 2( l)_i__v
(av)u 3 Al vy Vadlii- oy = 5 = 37

Exmps. 3 and 4 derived expressions for the photon entropy density and radiation pressure,

respectively, Both results can be written in terms of the photon energy density.

4 “v,pht Uy, pht
Sy,pht ~ 3 T Pohe = 3 (111D-9,10)

Exercise 8. Determine the number of photens per cubic meter and the photon energy and

entropy per cubic meter and the radiaticm pressure at 300, 3000, and 30,000 K.

The photon gas is always present. Thus, its properties should be added toc those of
the particles of matter to obtain total properties, In that respect our calculation of
perfect gas properties, Unit IIIC, was incomplete., The following problem compares the

photon and molecular contributions to perfect gas properties,

Exercise 9. Both photon density and photon energy density are functions of temperature

only. Gaseous particle density and therefore gaseous energy density are dependent on both
pressure and temperature, To compare the separate property coantributions of photons and
molecules, determine the pressure level at which molecular density would equal the photon
density at 300, 3000, and 30,000 K. In addition, determine the pressure level at which
the translational component of molecular energy would equal the photon energy per unit
volume. (Use the results of Exer. 8.)

The results of Exer., 9 demonstrate that the property contributions of photons are an

appreciable part of the thermostatic properties of a gas only at extremely high tempera-

Ans. 6. Using x = (he/3kT), dx = —(hc/)sz)dl and A = 0, x ==; A ==, x = (, we have

w = ¥z o2
87V da kTY? 7 [hc z(hc ) 1 kT [, xdx]
el = — =T{— d A = 87 —————
vepht U Jo & (he/AKT)_ ) (hc) fokAkT) 2 2er | [e(he/AT) (tﬂ Jo e*_1)

This integral is evaluated in terms of the Gamma Function and the Riemann Zeta Function,
see Ref. 5. The result is expressed as eqn. I[IID-8,

Ans. 7. The intgrnal energy per mole of photons is

5 4
41 277k 4 .
3 T K u T 4
u (T)NA C(\S h3 2)T NA F4§T _ - pht( ) T__ g
v = < = Thus ¢ .pht 3T , .06

nv(T) 8r - (2.404) » &555.)3 > 36.06
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atures or for an extremely rarefied gas. This result can be extrapolated to the condensed
phases as well. Although the photon gas is present within liquid and solid media, its
property contributions are negligible in. comparisen to the contribution of the particles
of matter and can be neglected. This does not mean that our study of photon propetties
was inconsequential., We will find that photons are an important means of transport
through evacuated, and frequently, dense gases and certain liquids and solids (see Unit
ITIE).

R. Lattice Vibrations (the Phonon Gas)

Crystalline solids are characterized by relatively strong bonds between the atoms or
molecules that occupy their lattice points, see Unit ICS. The principal energy storage
mechanism in atomic lattice point crystals is in the form of vibratiom of each atom about
its mean lattice position. Lattice vibrations have been successfuly modeled using two
fundamentally different approaches. One 1s based on explicit consideration of the vibra-
tion of each atom. The second ignores the details of particle vibration., Instead, it
considers the properties of the acoustical waves, or phonons that these vibrations gener-
ate. We begin with the vibrating atoms approach, using the model first proposed by
Zinstein.

1. The Einstein Model assumes that the N atoms or molecules that compose the
crystal are fixed in position by independent "linear spring" forces in all
three directions. That 1is, the complex lattice is resolved into 3N independent
particles all vibrating at a single (Finstein) frequancy, vgs see Fig. IIID-2.

W Y

Fig. IIID-2?. Schematic of an Actual Lattice
and Its Resolved Einstein Form

The energy levels available to a linear oscillator were introduced in Sect. IIIB of Unit
ITIC 1

EV,E = (f + E} hvE By = 1 . =0,1, 2, 3
Note that one can distinguish among the 3N linear oscillators by their positions and di-
rections of vib;ation. The oscillators of the Einstein model are Boltzons. Thus the dis-

tribution, partition function, and properties under the Einstein model are the same as
three modes of intermolecular vibration, see Sect. IIIB of Unit ITIC, with the Eingtein

craracteristic temperature
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hy
e =_-....E

E k

The property relationships for vibration are listed in Table 111C-1,10

10Notice that these expressions for the properties of golids are written in terms of
the universal gas comstant. The parameter is a physical constant of nature, R = Nk, It
appears in property relationships for all three phasss. Ia that sense the name gas con-
stant is unfortunate.

Ans. B. The required values are obtained by substitution into eqns. IIID-7, 8, 9, and 10,
fl/he = 69.40 o KL, (k/he)> = 3.356 - 10°m K ]

-3, - 14
nv(300 KY = 2,404 » 87 - 3.356 -lOSm 3K 3(300)31(3 = 5.472- 10 photons/m3
3 -23 5 =3,-3 4 4
uv(300 K) = 8w 1.38 - 10 J/ (part K)153.356 itm K (300) K =6.12610 6J/m3
4u (300 K) -6 3.
_ v 4+ 6.126 10 "J/m” _ . -3 3
sV(SOO K) = 3T 3. 300 2,720+ 10 "3/ (@K}
u (300 X) 96 . -6 3 _
p(300 K) =~ —L— _ 8.126 ;0 I/m _ 5,042 - 10 bar
Photon properties at other temperatures are 3 - T
T(K)} n (pht/m’) o (3/a) 3,1/ @’k pibar)
found similarly. We summarize. 200 artal®  5.13-108 2.72-10°0 300 - 1o 1

1 5

2.06 « 1077
1

3000 s.azerel?  6ar3-107F 2072107
0,000 5.67-10%%  s3-10®  2.72-107F 204107

Ans. 9. The condition of equal phgton and particle densities is specified bg
kT

= 8- 2.404&53 = n <2 or po=gr-2.0s UL

(he)

nv,pht he v,mol kT

Thus at 300 K, using the results of Exer. 8, we find

p==kI+n - 1.380 - 10"2%5/ (part K) - 300 K - 2.03 - 10’

3 =5 2
v, pht pht/m” *+ 10 “bar m" /N

= 2.26 - 10 bar

The translational energy per melecule is (3/2) kT. Thus the equal energy density condi-
tion is specified by 5 4
8k 4 3 3
=————3-T =1 EkT='2—p
15(he)

uv,pht v,mol

Thus at 300 K
2 2 -6 3 ~5 -11
== = =<f§,13¢ . = 4.09-10 b
P uv,pht 3 6,13 10 JI/m” + 10 bar/pa ar
To summarize, the gas pressures needed to have equal molecular and photeon densities at
300, 3000, and 30,000 K are 2.26 + 10711, 2,26 - 1077, and 2.26 + 10~ 3bars. The gas pres-
sures needed to have the translational component of internal energy equal the photon com~
ponent at 300, 3000, and 30,000 K are 4.09 « 107!'! 4,09 +10~7, and 4.09 « 10~=3 bars,
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- 3
e—vEJ’ET i . . By 2 eaE/T
Z = —_—— = R —_ - = -("—) —
E ( -BE/T) Ug 3R8E 7t ( BE/T ) CV,E 3R LT ( GE/'I‘ 2
1-e e -1 e -1
g

3R',—r— -8_/T

s =-E_3 - -~ 9% o E
SE T Rin ZE 5 /T ) 3Rin @_ e )
E
] -1

Application of these relationships to perfect gases was facilitated by the avail-

ability of specrroscopically measured values of SV > (Table IIIC-2). These measurements

are possible since intramolecular vibration within’independent gaseous melecules occcurs
in the manner of the model, viz., at fixed frequencies. In comparison, the Einstein model
bears very little resemblance to an ac;ual vibrating lattice, see Fig. IIIC-2. Vibration
of a lattice point along the axis of one of its bonds will obviously induce vibration in
both of the other bond directions and the vibration of a single atom will immediarely
propagate to induce vibration in its nearest neighbors. The 3N oscillators of the lattice
are not independent and their vibrations do not occur at a single frequency. Thus the
concept of & single Einstein frequency is artificial and one cannot measure eE'directly.
It must be interpreted from property data. (Usually it is deduced from specific heat
data.) This drawback is sufficient that in practice the Einstein model is used very
little for the analysis of lattice vibrarions,!} However, once GE has been determined,
the property prediceions of the Einstein model are quite successful,!Z:13 Tphe only seri-
ous égf}%iency is its prediction of low temperature pgoperties. For example, E;,E(T ={)
LD ; but measurements show that Cv.phn(T =+0}aT”. The following section shows that
both of these deficieacies are overcome by the Dzbye Model,

2. The Debve Model ignores the detailed behavior of individual vibrating lattice
peints. It deals with the acoustical waves produced by the vibratiens. The
characteristics of acoustical radiation, or phonons, closely parallel those of
electromagnetic radiaticn, or photons. Photeons are generated by electron motions
and propagate at the speed of light, Phonons are generated by lattice motions
and propagate at the speed of sound. Thus the phonon distribution is governed

by eqn. ITID-3 and 4 with the modifications that the average sound speed, cg, is

HThe Einstein model remains accurate for interatomic vibrations in solids whose
lattice points are occupied by multiatom molecules rather than atoms, e.g., In solid water
(HZO), carbon dioxide (COZ)' nitregen (NZ)’ etc. {(See below.)

120ne frequently finds that transparently superficial microscopic models yield amaz-
ingly accurate macroscopic predictions. It seems that the technique of summation or inte=
gration te cbtain total properties tends to smooth over the detailed inaccuracies of the
model,

31¢ is very common for the Einstein model to be compared to data using the measur-
able characteristic temperature of the Debye model, see below, as the value of the Ein-
stein temperature. This is an unjustified and erroneous assumption, 6p # Bp.  Such re-
ported comparisons are an unfair criticism of the Einstein model.
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substituted for the speed of light, ¢, and that the multiple two (introduced to
account for the two directions of polarization of transverse light waves) be-
comes three (accounting for both longitudinal waves and the two directions of
polarization of the transverse waved.“ Thus, in terms of frequency the phonon
: - 24,3
egene = Vv .
degeneracy is gphn(u) 12 /cs

Exercise 10. Is the characteristic temperature that prescribes the frequency spacing of

phonens, £,4,, smaller or larger tham that for photons, eqn. IIID-2?7 Draw a conclusion
with respect to the significance of the phonon frequency spacing.

In our consideration of electromagnetic waves we focused on the fregquency (or wave-
lengtn)} distribution of photon energy (or emission), In the case of acoustical waves, we
are relatively unconcerned about the energy distribution. Instead, we proceed directly
to total energy by integrating the energy distribution over the ailowsd zhonon Freguen-
ctes, The fact that there is a limit on phonon, but not photon, frequencies is the prin-
cipal difference between these otherwise very similar distributions. There is no upper
limit on the energy levels accessible to photons. However, the total number of energy
states accessible to che phonons is limited by the vibrations of their source. The N
atomic lattice points can each vibrate in three independent directions. Thus, there can
be only a total of 3N states accessible to the lattice vibration-generated phonon gas.

This limit is imposed by using it to stipulate a maximen Debye cutoff Ifreiuency, v

\)D \JD D
3N =[ g (vidv = 12Wf vzdv L (v3) (I1ID-11a)
phn 3 3 D
0 cS 0 cs

The cutoff frequency is sufficient to determine the contribution of lattice vibrations to
crystalline properties. That being the case,eqn. ITID-1lla is a particularly important

relationship. It defines Vh in terms of the sound speed and particle densitv of the sub-
stance.!* (Particle density is determinable from the density and molecular weight of the
crystal, N/V = pNA/M). Following normal praétice we express this microscopic energy limit

in units of temperacure

th h CS (BN 1/3 h cs 3pNA /3

1"Sound is transmitted through crystals by means of lattice vibrations. Thus sound
speed is related to the elastic constants, see Ref. 5, pg. 287. The separate longitudinal
and transverse sound speeds are

REEENE (30 -2 ¢
. Co Tl {1+ e 2k {1+ 1)

where K is the isothermal compressibility and |, is Poissons ratic. Representative values
for a few substances are listed in Table ID-2. The average sound speed is defined as

3 1 2
3" 3+ 3)
-] Cl Ct
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Values of the DJebye Temperature, BD’ of several solids are listed in Table IIID-1 at the

conclusion of this unit.

Exercise 11, Use the listed values of SD to infer the sound speed in iron and lead.

The implication of the cutoff frequency is that no phenons exist at frequencies above

v.. The limit is imposed on the distribution by specifying the degeneracy as

D
_ 125V 2 _
gphn(u) = _:E— v == vp gphn(v) =Q v o> v (IIID-12a)
]
This gives the phonon distribution as
g (v) 2
hn 127V v
n, (vy = —22% n_ (V) 0<wvswv
phn (ehv/kT__l) chn , 2 (ehv/kT__l) D
nphn(v) =0 v o> UD (ITID-12b)

With these expressions the energy of a phonon gas is readily formulated.

Example 5. Express the molar internal energy of a phonon gas, u hp» in.terms of an inte-
gral over the dimensionless variable x = hv/kT and the dimensionless temperature ratio,

X, = BD/T.

Phonon internal energy is defined by U = z (hu)nphn(u)dv. Substituting from eqn. IIID-12
and introducing the dimensionless variable

B
_ o . hdv - - - = D .
=T x =3 when v =90, x =0 and when v = UD, x T X,
We have
¥ o i)
D 2 D 3
127y f [ v } f 1217 f (hu) 1 (hdv)
U= hy |~ dv +| hu - (0) + dv-= Ty e e
c3 0 (ehv/kT__l) N C3 o kT (ehv/kT__l) kT
s D s
4 %p 3
- 127V (kT) 5 j’ xxdx
(hcs) 0 (e"-1)

Then introducing the relations WNA = ¥ and R = NAR’ we obtain the result shown below as
2qn. LIID-13a.

Exmp. 3 derived an expression for the internal energy of a phonon gas!?
R R
a, =9 ﬁT!e—) f x.cx (I1ID-13a)
phn 85 0 e*1

ISEqnsn ITID-13, 15, and 16 refer to a mole of lattice points in the crystal rather
than a mole of phonons.

1
Ans. 10, 9 hn = 0 cg/2kV /3. The only change is that from the speed of light to the
speed of sound. Thus, 2 hn << 8 ht+ ALt took a combination of a very small enclosure at

very low temperatures to achieve conditions under which 8 he ~ T. Thus, we always expect
) << T. 3
ohn
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fvaluation of u - requires that the Debve integral be evaluated over a range of argu—

ments.16 To facilitate its evaluatlon Table I11ID-2, at the conclusion of the unit, lists

values of the function . 6
Dxy) = —f 4K pere € = 2 (IIID-14)
D T
X"D Q (e -1)
when it is written in terms of D(XD) the phonon energy is
u hn(T,BD) = 3 RT D(KD) {(1IID-13b)
The lattice contribution to the specific heat (see Exmp. 6) and the entropy (see Exer. 12)
can be formulated in terms of the same function.17
_ du_, o _ 3x
cv,phn(xD) = (——55—)_ = 3R AD(XD) - % (ITID-15)
v
“x, e -1
Sohn RlapGe) - 3t (L-e ) (111ID-16)

Note to the Student. The first of these aebelopments requires dzf]erenttapzcn of an inte-
gral, Vi2., the use oy Leibnita Rule The purpese of these developments 18 o atd the
Student in understanding egns II7p-15 and 16. Neither of these deoeuopweats 18 repregan-
tative of student requirements. The use of the welationships to determing properties 18

a student objective, see Exer. 13.

Example 5. Differentiate eqn. ITID-13a to derive eqno. I1ID-15.

The develcpment consists of the fellowing differentiation
8,/ T

. _ [“Ehn) _ 3 { 9R 4[ ‘J
v,phn 8T e T o (e —l)
3 aD/T 3 4 aD/T 3,
oR 4[T) f % dx +_T_if x dx
8/ Yo (e"-D) eg dT |75 (e*-1)
In the second term the variable appears in the upper limit of the integral. Its differ-

enciation requires the use of Leibnitz Rule.

b (x) x
eyt = £1Ge b1 LY £, aG0] FE S L e 0)ae
G

dx a(x) dax

i6gqn., II1ID-12 implies that the minimum lattice energy is zerg. Bur infact, the min-=
imum energy of each linear oscillator is /2. Thus the zero point energy is }
v
D
hy - =
° = d == RB
Uphn J; g{v)dv or uphn 3 Rp
We omit this term for simplicity, since it affects only the level of energy not its change
with temperature.

1755 formulated, the Debye model predicts the specific heat at constant volume, Cy-
Applications to Solids require the specific heat at constant pressure, almost exclu-
sively. A prediction of the difference between these two functions can Ee made based on
the Debye model, but this requires that we predict the variation of the Debye temperature
with volume, see Ref. s, We omit this development and continue to depend on eqn. ib-6 to
account for the difference between specific heats.

TvB
c - c =
D v [
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Application to the second term gives

8
- i T xg dﬁ%% - 3%y
Sv,phn gRl+-—3 “Xp ar | = 3R APGxp) -
*p e U -1) (e " =1)

Exercise 12. Eqn. IIIB-17 was adapted to determine the phaton entropy demsity in Exmp. 3.
A similar procedure is needed to derive eqn., IIID-16 for the phonon entropy. Adapt the
procedure of Exmp. 3 to the specific case of phomons., Show that the result is eqn. IIID-16.

Exercise 13, Determine the lattice contribution to the internal energy, specific heart,
and entropy of aluminum at 100, 300, and 1000 K.

Fig. IIID-3 shows the Debye model for the
specific heat of phonons. Notice the similarity
of this function to the modes of a moclecular gas
(see the lcw-and high-temperature limit summar-

ies, Unitc IIIC, Sec. IIIC). In the high-temper-

| g |
o
:nﬁ}
e |
[a
I
F-9
———
|~
‘-h.——’w

ature, classical limit, T >> & the phonon gas

D’

is fully excited and Ev = 6+ (R/2). In this

»phn
low~temperature, quantum limit, T << BD, the

phionon gas is unexcited and the specific heat T 1.0
approaches zero. The form of this low tem-— eD

erature asymptote is one of the improvements .
P ymp e Fig. IIID~-3 The Debye Specific Heat
that the Debye model makes over the Einstein

model, Specifically {(see Exmp. 7)

3

- - T

: = 12,6 R[l) for — &L (TTID-17)
v,phn 5 8 0 12

. I D

Example 7. Determine the low-and high-temperature asymptotes of the Debye integral, eqn
ITID-14. Use these limits to formulate the low and high-temperature asymptotes of the

phonon energy, specific heat, and entropy.

Ans. 11, The necessary densities and molecular weights are found in Tables ID-2 and IA-2,
respectively. Thus

.. kb _4@]1/3 _ 1,380 - 10 225/ (pare ¥) - 455 K
s.Fe b 3N, 6.625 + 10 > “Js/part
-6 3 3 1/3
. [ LT » 55.25 g/ (g mol)éslo m”/em } = 3.48 -103m/s
3¢7.88 g/ecm” ¢ 6,023+ 10" part/ (g mol)}

Similarly for lead, using 8y = 86 K, o = 11.34 g/cmj, M = 207.2 g/(g wol), one obtains,

cs,Pb = 301 m/s.
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Low-Temperature Limit, T << &p. At low temperatures the upper limit of the Debye integral
approaches infinity, This definite integral can be evaluated in terms of the gamma and
Riemann zeta functions, see Ref. 5. Its value is 7°%/15. So, limit Xy ==, D{x.) =

(3/x3) (/15) . D

Substituting into egns. IIID-13, 15, and 16, we have

3 3 : 3
- _ 3 -[1) = _ 12 4—(T) - _'_5»'rr“*—(T)
“bhn 5 RKB T v, phn 5 7 Rl3 , Sphn = 5 "8
D D D
High-Temperature Limit, T >>8D. At high temperatures the exponential can be expanded
hv
X _ hv _ D
e =1+ x X = T < XD T >> 1
Then the integral becomes
X 3
D 3 b3
3 f x dx 3 ( D)
D == =2 dx  _ 2 {2 =
) 273 s A+x-n - 337"
D *p
Substituting into eqms. IIID-15, 17, and 18, we have
- - - P XD —
uphn = 3RT CV,phn = 3R[4 - —_—"-H_—(1+XD‘1)?| = 3R

Soha ~ R{4 - 3mm(1- (L-x)]= ﬁ[a-&zm(e—iﬂ

Exercise 14, A silicon rectifier is to be_used at liquid hydrogen temperatures, 22 K.
What would be the lattice contribution to <, at that temperature?

Ii. THE PROFERTIES OF FREE ELECTRCNS

The valence electrons of a metal are shared among a large number of nearest and next
nearest neighbors of the densely packed metallic lattice, see Sect. LI of Unit IC3. As a
result these electrons can move about within the crystal particibating in the conduction

of electricity and heat (see Unit TIIIE). Thus, free electrons can be realisc¢ically mod-

18

eled as independent particles translating within their crystalline box. Their energy

levels and degeneracies are essentially those of the particle in a box, see Table IITA-1.
In Sect. IIIA of Unit IIIC, we treated the translation of molecular gases. The charac-

teristic temperature for translation was found to he

h2

2/3

g = o
8m Vv k

tr

1%The potential portion of the internal energy corresponding' to the repulsion between
the negatively charged electrons and the positively charged lattice points is insignif-
icant in comparison to the kinetic portion of the free electron energy in metallic con~-
ductors. Thus, free electrons in a metal can be treated as independent particles., This
assumption tends to break down in semiconductors. Free electron~lattice point interac-
tions, or scattering, is important to the determination of the magnitude of free electron
transport., This topic is considered in Unit IIIE.
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Exercise 15. Determine the volume that would be required to achieve a free electron
translacional characteristic temperature of 1 K.

Exer. 15 demonstrates that although electreons are far lighter than even the lightest mole-
cules, etr for free electrons remains low enough that free electron energy can alsa be
considered continucus. Therefore, the free electron distribution can be written in terms

of the degeneracy developed for the tramslation of independent molecules in Appendix

Ans. 12, Phonons are similar te photons in that: o =0, e

j = hvy, and the I =] dv.

Thus the general form of eqn.ITIB-17 reduces to 1
nu .
I - hn _ f _ -hv/kT
Sotm = phn — -k nghn(v)m[l e )dv
Then substituting from eqns. IIID-~12a and 13b N
D
= . o am lz_nv_gf 2(_-hw’kT
Sphn nsphn n3RD(xD) - C3 . voin } e )du
s

When the integral term is expressed in dimensionless form and transformed using the same
definitions for integration by parts as defined in Exmp. 3, we obtain

3 s /T 3 3 g /T 9
_ 12“‘3"‘(“) f xin(l-e" )dx—-lZnd(kT) Ztn(l-e " dx
c h 0 hcs ? 3
s

e’ Ol

Then if we introduce the definition of GD in the form

83 ) (hc } ( ) 3qNA
D 4nv 4uv
we cbtain
3 Xy a
- _ (T 3 X0 lj’ <34
Sohn = MSphg - NIRDGxy) - 9Nk _e—) Tm(l D) T3 X
D 0 o"-1
which gives egqn. IIID-16 using R = N k and the definition of D(t )

Ans. 13. Gp = 396 K, Thus at 100 K, xp = 396 K/100 K = 3,96, And from Table IIID-2,
D(3.96) = 0,186. Substitruting we obtain

Uopg = RITD(x)] = 3-8.314 J/(g mol K) + (100 K - 0.186) = 464 3/ (g mol)
- _ 3z, 3-3.96
<. phn¥p) = BR[A D{x,) = ) ]=3 - 8.314 J/(g mol K) * [4-0.186 - m}
(e "-1)
=12.8 J/(g mol K)
Sohn ﬁ[ﬂ D(xy) - 31 -e x“]:l =8.314 J/(g mol K) * [4 0.186 - 3nf1-e"3? ]
= 6,67.J/(g mol K)
In a similar manner find ™ s boxy) ?»L:;:L’ T, 2,‘;%) 5%!'-5
o h ot Ve am

L0000  p.196 0.850 b.52 2.98 679
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IXIC-A, eqn ILIC-Al, The culy necessary modification is multiplicatien by a factor of two

to account for the fact that free electrons may have either spin up or spin down. !?
* ,3/2
2 mel L
g . (g) = 4V g2 (IIID-18)
el h2

The introduction to the unit, specifically Exer. 1, demonstrated that free electrons
in a metal do not satisfy the Boltzmann limit. Therefore, before we develop rtheir prop-
erty contributions, we must evaluate the unknown Lagrange multiplier o applicable to free
electrons. In the preceding section we found that a equals zero.for systems In which the
particles are massless. This conclusion was reached by exploiting the fact that massless
particles need not be conserved, However, free electrens are not massless; they must be
conserved. Thus, we c¢annot use the same technique with free electrons.

Recall that the Boltzmann limit is prescribed by the condition (gj/nj)max=$ea>> 1.
The fact that free electrons do not even come close to satisfying the Boltzmann limit re-
stricts the possible values of a substantially, viz., 0 < e’ n 1. That is, o is restricted
to at most smhkll positive, zero, or negative values. As we noted at the beginning of this
unit, approach to the limit is promoted by high temperatures. So we expect a to be a func-

tion of temperature such that it becomes increasingly negative as temperature decreases.

With the aid of this perception we introduce the definition?®
°y
X = - -l:,i; (IIID"lg)

€. has units of energy and is called the Fermi level (or Fermi energy)?! With this def-
inition, the Fermi distribution function becomes

FD .

n-{e) _ 1

g(e)  (e-ep)/KT (ITIR-14)
e +1

F(g) =

1974 addition to translation, the electrons undergo rotation about their own axes.
Because of their charge, this motion gives rise to a magnetic moment which acts up or
down according to the direction of rotation. In the absence of an external field, the
energy associated with this motion is constant, so it is neglected. The degeneracy, how-
ever, is multiplied by a factor of two due to the up or down corientationm of the spin
vector.

20This definition introduces no new assumptions as long as we do not prescribe that
€p 1s a constant. The significance of the definition is that by separating the antici-
pated approximate relatiomship of a with temperature, we may expect &y [O be, at best,
only weakly dependent on T.

ZIEF is the chemical potential (u) or Gibbs function per particle discussed in Unit
VID. For a formal identification of «, see Ref. 7.

-

Ans. 14, For silicon By = 658 K. Thus xp = 658 K/22 K = 29.9. The low-temperature
approximation is applicable
- _ 12 W& 8.314 J/(g mol K)

-2
= = 7. + 10
S, phn S (29-9)3 7.27 J/ (g mol X)




20 THE PROPERTIES OF GASES COMPOSED OF LOW-MASS PARTICLES

The Fermi function, F(2), is sketched in Fig, .
~EF
IIID-4 for different temperature ranges. Fle) T %
|
(Remember that no more than one Fermicn can : ‘\_T:O °
h:\_,—thgF
occupy the same state, 0 < F(e) < 1.} At abso~ < e k
F
lute zero temperature, F(e) is a step function—
all of the states up to the Fermi level, e; = Fig. IIID-4. The Fermi

EF(D K), are full and all of the states above Function

this level are empty. HNotice that the distribution corresponding to T <<€;/k, the degen-
erate range, departs only slightly from the T = 0 K distribution. It will be seen below
that all temperatures below the melting point of metals lie in the range T <<£;/k. Hence
the distribution at 0 K, or the value of é;, is extremely significant in determining the
properties of free electromns.

The expression for the degeneracy in conjuncticn with the simplified distribution
function at zero temperature {nel(e) = gel(e) ate < e;; nel(s) =0 at ¢ > E;] and the
conservation of particles conditionm, Nal = z dnel, alleows an expression for g; to be

developed.

Example 8. Derive an expression for £° in terms of the valence, molecular weight, and
density of the crystal by applying the conservation of particles condition at absolure
Zera.

At zero temperature the distribution function is given as®?
szL 3/2 N
= gel(a) = 47V 5 ) = £ < gl n =0 g > g°

T=0 bk :

nel

Thus we can express the total number of electrons as
3/2 el

o [2[{17"- F s ]
N, =] g _(g)de = 4avi— j- £2de + (0)de
el el \ 2 o
0 h 0 >
F
*
(32 3/2 2 38 423
No= anyf—22 - T
el 2 3 F F * wV
- h 8m . -
el

22The statement "at zero temperature" should not be taken too literally. At zero
temperature, the series cannot be represented as a continuous function and eqn, IIID-18
is invalid.

Ans. L5, Substituting m:l = 0,109 10—3lkg 3
i - 2 B
v = n’ 32 - (6.625 - 107> Js/elect) i 22.88 - 1072203
B * B 31 -23 R "
m, k8 +9.109 - 10 “Tkg - 1.380 « 10" “"J/(elect K}1K

or a cube 661 A on a side.
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The characteristics of Fermi distribution were delineated in Fig. I1ID-4, for the

various temperature ranges defined in terms of E;/k. With the expression for E; devel-

oped in Exmp. 8, we can quantify the comparison of temperatures by defining a character-

istic Fermi temperature. 2/3

g2 2 31 N
o =L = —%——(—Eﬁ) (I1ID-20)

where n, is the valence of the atom and v is the molar crystalline specific velume.

Exercise 16. Determine the magnitude of the Fermi temperature for aluminum, copper,and
lead. (The necessary valences, molecular weights, and densities are found in Tables TA-1
and ID-2.)

The answer to Exer. L6 and Table ITID-1 demonstrate that the values of SF are so
large that the free electrons of a metallic crystal are always within the degenerate
limit, T << BF. Their distribution is the rounded step of Fig. IIID-4, departing only
slightly from the T = 0 K distribution, The average energy of the electrons can be esti-
mated From the absolute zero distribution.

Example 9. Determine the minimum average particle energy for a free electron gas, i,e.,

at absolute zero temperature. Compare this energy to that which the electrons would have

if thev were classical translating particles, €., . jasg = (3/2) T, by defining the

kinetic temmerature of free electrons: T, . = (2/e_ [k,
: kin tr
The average energy of a system of particles is defined by £ = L p,e,. For a system of
free electrons this general relationship becomes i 3
l o
e N jF enelde
= f @ = 0.
At absolute zero, m 801 or £ < €q and nq 0, £ > Ep
* 3/2 €2 * 3/2
Te . 1 mf:g (s)de = 4V (Zmel) F&. %de 4ﬂV(2mel) [g .:-"5'/2]
“w )de = i S T °F
el N1 Jo el Y1\ n? 0 Yeil n 3
03/2 . o 3 .
Then substituting from Exmp. & for Nel 4GV {2m /h2)3/2(2/3) .EF / , we obtain Eel = E'EF.

Employing the definition of the kinetic temperature, we find

Te
o _ 2 Fel 2

T =

kin 3 k 3
Thus the kinetic temperature of free electrons evem in_the limit of zero absolute is enor-
mous. The average electron still moves very rapidly.23

AR _2,
5 k s F

-

23The concept of kinetic temperature provides a means to compare the energy of degen-
erate free electrons to a hypothetical classical energy in the more recognizable units of
temperature. The thermodynamic temperature of the electrons remains that of the lattice
with which they are in equilibrium.
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Since free electrons are highly degenerate at crdinary temperatures, only those par-
ticles in states within a few kT of the Fermi level are excited and these only to a few
kT above E%.z“ As a result the internal energy of a free electron gas is only slightly
more than that at absolute zero. On the basis of the free.electron model presented in
this section the free electron contribution to internal energy and specific heat are found
to be (the development of this relationship "is rather Eomplicated, see Ref . 7)

_ _ \2 _ ,au I2 _ .
T =2R eF\} = wz(ﬁ—)] c = .J-l—)_ = 12— R(l) (I11D-21,22)
h'l

el 5 GF v,el v oT BF

Thus the free electron contribution to the specific heat is praedicred to be linearly
proportional to remperature and is quite small since T << SF. Both of these general pre-
dictions are validated by experiment. However, the simple free electron model is appar-
ently not sufficient to accurately predict the temperature coefficient in all metals. We
will nevertheless employ these relationships in the following section to predict the total

properties of solids.-

1II. THE PROPERTIES OF SOLIDS

We have developed the properties of photon, phonon and free electron gases. All
three are present within a conducting solid. Though the photon gas is always present, we
saw in Exer. 9 that its property contributions are negligible when compared to, even Very
low density, marter. Thus the properties of metallic conductors can be approximated as

the sum of the phonon and free electron contributions

+ ¢

= u + u c
v,el

= - b
“mcl phn el v,mtl ¢y, pha (I1IID-23a,b)

The following problem illustrates the relative magnitudes of these contributions.

Example 10. Determine the phonon and free electron contribution to the zero point energy
of copper (u;hn = 9/8 B8, see footnote 18), In addition, determine the internal energy
(u-u®) and specific heat contributions of these components at 100, 300, and 1000 K.

The phonon contributions can be determined using BD = 315 K and eqns. LITID-13b and 15.
- 9 = 9
° = = ==+ 8. J K) « 315 K = 2947 J mol
Who T 3 R&, =73 8,314 J/(g mol K) + 3 /(g )

With Xy % BD/T = 115 K/100 K = 3.15, we find Dp(3.15) = 0.268. This gives

(u-1u®) (100 K)phn = 3 ﬁTD(xD) - 3+ 8.314 3/(g mol K) » 100 K+ 0,268 = 669 J/ {g mol)

and

- - 3%y 3+3.15

¢ (100 K) = 3R|4D{x_} - = 3.8.314 J/(gmolK) |4+ 0.268 - =16.2 J/ (g0l K)
v,phon D X (e3'15—1

e -1

-

24The Fermi level is depressed very slightly from its value at absolute zero

E = €° [1 - I[E- (_1—)2]
FoCT 12 \8;



Exercise 17. The linear temperature dependence of Ev o] assures
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Free electron properties are determined using eqn, IIID-21 and 22

To o33 = (N, ) c10%% - 3
) =3 Re, (5] 8.314 J/(gmolK) + 8.16 « 10°K = 4.07 » 10°J/ (g mol)

2 2
- = _ e 5., 2{TY"_ - 5y, 2( 100% )
u,, (100 K) - ul; T Ut " ( ) 4.,07+107J/ (g mol) [—) m (———8 45{) 2.51J/{gmol)

OF 12 .16+ 10
2 2
- 1 = m
Cv,el = 2 R(?“) = =+ 8.314 J/(gmolK) - (H—————lOOK 4J = 0.0503 J/(gmol K)
’ F 8.16 + 10
The values at other temperatures are
-3 e {T-a%) T - In T
- phn v, phn el v,el T-T Zac1 v, mel
found similarly. The results are T I T T = i E X
shown in tabular form. x) X} K} {K) (®)
* 100 80,4 L1.9% 0,301 Qq.603% -10-2 80.7 4.94 + 1l;|‘i 1.96
0 97 .87 .m2 1.82 <1070 s0e  4.99.10°  2.89
1000 2660 306 30.1 6.05+1072 2690 s5.20-10° .06

Although Exmp. 10 treats a specific substance, it allows one to draw general conclusions.
The zero point energy of the free electrons is a large component of the total energy of a
metallic conductor. So much so that it masks the important effect of the variation of net

energy with temperature. At ordinary temperatures, 8. < T << SF, phonons make a dominant

D
contribution to energy change or specific heats, although the free electron contribution

is not negligible. At low temperatures (T << BD’ GF) the phonon component of specific
heat becomes proportional to T3, but the free electron contribution remains linear. Thus
as temperature i1s reduced below a certain level the electron contribution becomes more

important and it will dominate at sufficiently low temperature levels.

Lothcn T —
i
‘\Free

that it will dominate ¢ ho 2t both sufficiently 1ow’and, in e von

theory, at sufficiently hlgh temperatures, Determine_both the
low and high temperatures, Ta and Tb, where ¢ = ¢y el for
1

: . v, phn
solid silver.

Ans. 16. The necessary valences and molecular weights can be extracted from Table IA-1

and the densities from Table ID-2.
AL, nej=3, M= 26.98 g/(gmol), 0=2.70 g/cm3; Cu, n, = 1, M = 63.55 g/(gmol},
p = 8,94 g/cma; Pb, n, = 2, M= 207.2 g/(gmol), p = 11.34 gfcmB. Thus using eqn. ITID-20

o . (6.625 + 107" Js/elect)?
F,al 8-'9.109 + 10'31kg - 1,380~ 10"23J/e1ect K
~ 2/3
. |3+3 elect/part « 2,70 - lOSkg/m3 - 6.023 '1026part/kguml) -1 35-105K
T - 26.98 kg/{kgmol) )
imilarly, 6 = 8.16 -10%K, 8 = 6.91 - 10°%.

F,Cu F,Pb
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Free electrons contribute to the properties of all conductors. Our development of
free electron properties, however, has been limited to materials in which the number of
free electrons is fixed. This is true for the metallic conductors and of course for non-
conductors which have no free electrons. In semiconductors the number of iree electrons
varies with temperature and eqns. IIID-21 and 22 are inadequate to describe their preoper-
ties. The manner of this variation is discussed qualitatively in Unit ITIE in terms of
its significance to transpert properties. Although free electrons make only marginal con-
tributions to "thermostatic" properties, they are of primary importance to transport and
transport properties.

Thus far we have considered only elemental solids that have lattice points occupied
by atoms. These elements include the metals, rare gases,and the transition elements (see
Unit ICS). In these solids the only vibrational modes are those associated with oscilia-
tion of the atoms with respect to the bonds that join them. Since each atom is fixed by
the same bonds, the single characteristic temperature of the Debye model is reasonably
successful in predicting the vibrational energy of these lattices., This characteristic is
shared by the compound crystal formed of ionic molecules— the sodium chloride structure,
see Fig. ICS-6. Each atom in this structure is also fixed in position by identical bonds.
Thus & single Debye temperature is sufficient to model these crystals as well., It is,
however, necessary to account for the fact that there are three modes of vibration per
atom or 2+ 3 = 6 modes per molecule. The Debye cutoff frequency is determined by the
total number of lattice vibration medes. Thus for Zonic molecular sclids formed in the

sodiwm chloride structure the Debye temperqture is related to the sound speed by

/ 3
he (6NA 1/ (TIID-24a)

s
% T x 4T
The phonon contribution to the internal energy and specific heat of these insulating crys-

tals becomes

3x

- - M — D
= - = - I

u hn(T’ eD) 6RT D(XD) 6R 4D(KD) (IIID-25,26)

P Cv,phn x

. (e D—l)'

Exercise 18. What is the specific heat of table salt (NaCl) at STP? What will be the
high temperature limit value of EV and at what temperature will it be achieved?

Exercise 19. The sound speed and density of potassium chloride are reported to be 2430
m/s and 1.99 g/cm2. Determine the Debye temperature of this crystal and estimate its
specific heat at room temperature,

-

An examination of egn, ITID-25 or the answer to Exer. 18 reveals that the classical

limic, T >> 9 lattice specific heat of a sedium chloride structure solid is 6R. (Re-

D,
call that the limit is 3R in atomic lattice point elements.} This result can be general-

ized to all molecular and atomic solids., Each atom in a solid has three degrees of
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vibrational freedom and the classical limit energy of each vibrational degree of freedom
is 2+ (kT/2). Thus the elassical limit vibrational speetfic heat of all pure substance
solids is Ev = 3na§, where n 1s the number of atoms per molecule. However, more detailed
consideration ¢f solids whose lattice points are occupied by molecules regquires that we
differentiate between the intramolecular vibrations that affect the crystal as a whole,

the accustical modes, and the vibrations that occur within the molecule, Zhe opiiogl

modes. <5

Optical Modes. The molecules that occupy the lattice points of a solid have
associated interngl vibrational modes which number 3n, =5 in linear molecules
and 3na-—6 in nonlinear molecules (see Unit IIIC, Sect. IIIC). In general
these modes are initiated at relatively high temperatures, see Table ILIC-2,
and occur at a relatively fixed frequency.<® The property contributions of
these modes can be gredicted in the same manner as that for internal vibration
of a gas molecule,?

Acoustical Modes. Molecular lattice points vibrate both linearly and torsion~
ally with respect te the forces that bind them one to another in the. . lattice,
Vibration of any individual molecule in one of these modes will induce vibra-
tion in its other modes and those of its neighbors. Thus the external vibra-
tional modes (five per molecule in linear molecules, six per molecule in non-
linear molecules) are aot fixed to any particular lattice point nor do thev
oceur at any single frequency. These modes belong to the lattice as a whole—

23Covalent molecules form molecular lattice point crystals. These include the homo-
nuclear diatomic molecule crystals formed by the oxidizing elements, e.8., Nz, 02, Clz.

26The internal modes are called the optical modes because their excitation frequen-
cies are sufficiently high that an incident photon is much more likely to be absorbed by
excitation of an internal mode vibratiom than by lattice vibration. The external modes
are called the acgustical modes because they are much more likely to abserb an incident
phonon, sound wave, than are the high frequency internal modes.

27Table ITIC-1 gives a summary of the relationships needed to determine the property
contributions of an internal vibrational made. They were applied to the three modes of
vibration of an atemic lattice under the Einstein model for the properties of solids.
application to the internal modes of a molecular lattice is considered in Appendix A.

Ans. 17, If state (a) is within the T3 region, then T 1is easily determined from the
condition a )

3

2 T T 3

v,el 5 = = C— % " R(’éﬁ) or T, = Ij 3(215 x A—J = 1.82 K
'€ - F P p/- a 247°+ 6,35 - 10K

(8]

ot
|

Since Ta/GD < 1/12, our initial assumption is justified.

Similarly if state (b) is at sufficiently high temperatures T > BD, then ¢ = 3R and
. S v,phn
Tb can be determified from the condition.
2 T
z -~ - 3R -6 4, . 6 Yo o 4
Cv,el =3 R ep —cv,phn = 3R or 'I‘b == eF- 2 6,35 10 K = 3.36-10 K

Since Tb >>®D, this assumption is also justified,
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they generate phonons.26 Thus like atomic lattices the external vibrational

modes of a molecular lattice point crystal cam be modeled with satisfactory
accuragg using a single Debye cutoff temperature and the Debye continuum
model,

From the preceding discussion we conclude that the properties of molecular lattice point
erystals can be treated as a linear superposition of an Einstein function for each of the
separate internal modes and a Debye continuum for the collective external medes. The pro-
cedures required to complete such an evaluation are presented in Appendix A, which in-
cludes application to both ice and dry ice. But some general trends cam be recognized
without detailed study. Thg internal mode characteristic temperatures, ev,p see Table
ITIC-2, are often high enough that the optical modes are unexcited at ordinary tempera-
tures (frequently up to the melting point of the solid). The Debye temperature can be
determined from sound speed data. Often it is low enough that the acoustical modes are

fully excited at ordinary temperatures. Under these conditions (BD < T << Bv p) the spe-

3

cific heatsof linear and nonlinear molecular crystals respectively are Ev 1= 5R and
- 3

Ev ngﬁ 6R. A much more quantitative perception of these principles can be gained by
27

studying Appendix A.

28The Debye model ignored the detalled motions of the atomic lattice. It accounted
for the spring stiffness through the effect of sound speed on the cutoff temperature {or
cutoff temperatures, if the longitudinal and transverse waves are treated separately).
Improved results can be achieved if a model is used that accounts for the natural frequen-
cles of the spring mass complex constituting the lattice. This can be done in terms of a
modified frequeney spectrum, g hp{v}. In most cases the improvement in results is not
warranted by the increased difficulty of calculation, see Ref. 6.

Ans. 18, From Table IIID-1, 6y = 281 K and Xp = 8p/T = 281 K/300 K = 0.937, Thus using
Table IIID-2, D(xD) = (0.693. So
z (300 X) = 6R |4+ 0.663 - =20:937 | _ 5 56 § = 47.9 1/ (gmol &)
v,phn 0.937
(e -1)
The classical limic is_established at approximately Xy = 0.5 or T = 2+ 281 K = 562 K,
The limiting value is ¢ = §R.
v, phn
Ans., 19. MK = 39,10 and MCl = 35.45, thus MKCl = 74,55 kg/{kg mol)
1/3 1/2
o o (PP T6.6.023- 10%/ (kg mol ) - 1.99 - 10%ke/m
D 4™ k 47 = 74.55 kg/ (kg mol)
6.625 * 10‘34Js/part + 2430 m/s
28 = 230 K
N 1.380 - 10 ""3/(parc K)
Thus at roem temperature, Xy = 230 K/300 K = 0.767 and D(xD) = 0.745. Finally
z (300 K) = 6R 4+ 0.745 - ——2767 . 5 90 § = 49.1 J/(g molK)
v,phn (e0'767-1)
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We have been able to describe the properties of solids rather completely. The prop-
erties of liquids are more difficult to prediet. At low energy levels, liquids are "solid
like." Lattice vibrations predominate over translation of the particles from one region
to another within the liquid. Thus the energy and specific heats of atomic and molecular
iliquids are not too differeat from those of solids just discussed. A major difference is
that we must add an entropy compaonent to account for the fact that liquid particles are
nonlocalized indistinguishable particles. One difficulty in analyzing liquid properties
is determining just how much of this "communal entropy" to irclude in evaluating the en-
tropy of liquids. (The full communal entropy is the difference between the Maxwell-
Boltzmann and Boltzmann limit entropies, scomm =k L N!.) As the energy level of the
liquid increases, a greater percentage of the particles are able to escape to new posi-
tions within the liquid latrice. In these instances a fixed neighbor, simple harmonic
vibration model for the lattice energy is imncreasingly complicated. It may even be neces-
sary to abandon the independent particle assumption. We leave quantitative determination

of liquid properties to more advanced treatments.



APPENDIX IIID-A

MOLECULAR LATTICE POINT CRYSTALS

Each molecule in a molecular lattice point crystal contributes 3na vibrational modes. In

the text we pointed out how and why these modes could be divided between the optical and

acoustical branches.

Optical Modes. There are Py = 3ny -5 0r Py = Bna-ﬁ cptical modes per lattice
point in linear and nonlinear molecule crystals, respectively. These modes are
assumed to be confined within the molecule and to vibrate at a single fixed fre-
quency. The property contributions of the intermal, optical modes are to be pre—
dicted using the same relationships and characteristic temperatures as those used
for vibration of gaseous molecules, see Table IIIC-1 and 2.

- _=% 1 1 - - f 2. e V0P
u =R} 9 = + c =R } (x Y 5/ (ITID-Al,A2)
opt 2, TV,p|2 X, v,opt Sy VP ( X, )2
p L (e P p e PP
X X 0 .
s =R LE %P rn(l-e v,p)-J where X = —%}P- {(IIID-A3)
opt -1 ( L. b v,p

Acoustical Modes. There are 5 or 6 acoustical modes per lattice point in lin-
aar and nonlinear molecules, respectively. These modes are assumed to be dis-
tributed throughout the crystal as a whole. Their property contributions are
to be predicted using the Debye continuum model. The characteristic tempera-
tures are predicted by eqn. IIID-11b. Their respective property contributicns

are
) = SﬁTD(xD,n) By g T BRTD(x, ) (I1ID-A4a,b)
Ev(i’ﬁ)=5ﬁkn(x]}’l)— :D; } EV(E,M)=6E[4D(>¢D’M)- ianzQ } (11ID-A5a,b)
(e 77-1) (e -1
El,f% i[&D(xD’“—-Bﬁ.n(l—ede’?')] - zﬁ[au(xn’m) -32n(l-e_XD’H£):l (I11D-363,5)
where  Xp o, = e_DTi T i)'%:'&

The total properties of the crystal are a linear superposition of optical and lartice

properties.

-

;1:-‘: _!.; = + s = 3 + iIID-A7a,b
opt 2 <, cv,opt cv,l s Sopt Sg (111 a,b,c)

We illustrate the use of these relationships in the following problems.

28
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Example Al. The speed of sound in solid water is reportaed as 3200 m/s. Predict the spe-
cific heat at constant volume for ice just below the melting point.

The vibrational characteristic temperatures are listed in Table ITIC-2: 2294 K, 5262 K,
5404 K. The Debye temperature is determined from eqn. IIID-A4b.

The required specific volume can be obtained from Table IC-3: v = vs(0.01°C) = 1.0908
cm3/g. Thus

1/3 1/3
o = (j?ﬂg bes 3-6.023 » 10°3/ (g mol)
D l4mvM ¥ 3
4m+ 1.0908 em™ /g - 18.02 g/ (gmol)

'

6.625 - 10_34Js/part - 3.2 -105cm/s
1.38 - 10_23J/(part )
Thus, at T = 0.01°C = 273 K, Xy e = 298 K/273 K = 1.09. D(xD’nz) = 0,653 and

= 298 K

c
—Xﬁﬁﬁ =6 P - 0.653 - —2—L1492—] = 5.73

- @l 091
And x_ . = 2294 K/273 K = 8.40, X ., =19.3 and x_ . = 19.8
Vyl V,Z V,3
c 8.4 c c
Ll g2 —8 __ g 0159, Va2 1551078, %3 - 9871077
R (8412 R R

Finally, ¢ . = (5.73+0.0159+0+0) - 8.314 J/(gmolK) = 47.8 J/(gmolK)

Exercise Al. The speed of sound in solid carbon dioxide (dry ice) is low enough that the

acoustical waves of dry ice are fully excited at the temperature level of its normal sub—
limation point, -73°C, Prediet the specific heat at constant volume of dry ice at its
normal sublimation point. (Answer on page 30.)
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TABLE IIID-1 CHARACTERISTIC
TEMPERATURES OF SQLIDS

TABLE ITID-2 THE DEBYE FUNCTION

Subatance Symbol 0O, (K) O (X}

Metals

Alumisun AL 396 13.5- lo*
Copper .  Cu 315 .16 - 10° ) 0(xy)
Chroas er 40z 12.7-10" 0.0 1.0000
Gold Au 165 5.41 - 10° gi' gjgggg
Indium In 108 9.95 - 10% 8.5 5.8250
Iron Fe 455 13.0+10° : ol
Lesd Pb 36 6.91 106 3 0.283%
Mercury  Hg 90 5.11+10° . e
Nicksl wi o 456 13,6 - 0t 10° 6.019%
Potasstum X 1o 2.33 - 1% o 0-0024
Platinuz Pt 220 1.0 - 1%
Silver 4g 215 6.35.10% Bxp) = L ["D .

Non_MWecals *n° (e - 1;
Diamond ¢ 1860 Lim 3 " xlix n
Germanium Ge 366 xpe= D oo = 3£ PR )
Silicon 51 658
SodLum

Chloride XRaCl 231
Tellurium Ta 8%

THE PROPERTIES OF GASES COMPOSED OF LOW-MASS PARTICLES

éns. Al._ The faet that the acousti_cal modes are fully excited, T >> dp gs implies that
¢, 7 = 3R. The characteristic temperatures of the 4 optical modes are: 960.1 K (2),

2932 K, 3380 K. At -78°C = 195 K, their corresponding dimensionless temperatures are:
Xy (1,2) = 960.1 K/195 K = 4.92, (2), Xy,3 = 9.91, xy 4 = 17.3. Thus the optical mode

specific heats are

- X
: v,1,2 .92
vov(1,2) _ (x )2 e = (4,92)2 - 5 = 0.179

R v(1,2) ” 7} 4.92 .2

v(l,2) (e -1)
e -1
Similarly, & ../R = 4.88-107°, 5 /R = 9.18 - 107°.

V33 V,4

iThus the total specific heat is
I - ; P
] cvp=(5+2-0.179+4.88-10 +6.18+ 10 JR=5.36 R=44.6 J/(gmolK)

c =c +
v v, 5




